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Summary

Immune-based therapies that prevent type 1 diabetes or preserve metabolic
function remaining at diagnosis have become a major objective for funding
agencies and international trial consortia, and receive backing from notable
patient advocate groups. The development of immune-based therapeutic
strategies in this arena requires a careful balancing of the risks of the therapy
against the potential benefits, because many individuals are diagnosed or
identified as being at increased risk of disease in early childhood, a period
when manipulation of the developing immune system should be undertaken
with caution. In addition, a therapy exists (daily insulin injection) that is life-
saving in the acute stages of disease and can be used effectively over a life-
time as maintenance. Conversely, the disease is increasing in incidence; is
peaking in ever-younger age groups; carries significant risk of increased mor-
bidity and early mortality; and remains difficult to manage effectively in
many settings. With these issues in mind, in this article we review progress
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The perspective

With the exception of one or two early attempts at disease
modulation, the field of immunotherapy for type 1 diabetes
did not develop significant momentum until the 1980s,
during which a series of studies were initiated that made use
of a drug (cyclosporin) which had, by then, revolutionized
immune suppression in the setting of organ transplanta-
tion. Some 20 years on from those early successes, in 2007
we reviewed the status of intervention and prevention trials
for type 1 diabetes [1]. The timing of our commentary was
significant; the first major advance since cyclosporin had
recently emerged, notably with the publication of two
studies using monoclonal antibodies (mAbs) targeting CD3
and engineered to have limited Fc binding, both of which
demonstrated clinically relevant efficacy with manageable
toxicity [2,3]. At that stage we discussed the fact that these
drugs (subsequently emerging as teplizumab and otelixizu-
mab) were lead agents at the head of a therapeutic pipeline
of immunomodulators. These included several drugs that
were emerging from the fields of transplantation immunol-
ogy and as treatments for other autoimmune and inflam-
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matory diseases, as well as disease-specific, antigen-based
therapeutics. In a subsequent, related review paper we high-
lighted the potential and pitfalls of harnessing these agents
into combinations [4], including a proposed ‘desig-
ner combo’ of anti-inflammatory + immune modulator +
antigen. Moreover, to facilitate the pipeline, during the same
period significant infrastructure was emerging in the form
of clinical trial networks, within which clinical studies could
be conducted to agreed and standardized designs and pro-
tocols. The exemplar of this approach is Type 1 Diabetes
TrialNet (http://www.diabetestrialnet.org). There was even
significant and demonstrable interest in this disease space
being displayed by large pharmaceutical concerns. Conse-
quently, as a result of this constellation of events, in 2007
the clinical trial horizon for type 1 diabetes was viewed with
the expectation of success and progress. Some 6 years on,
several key questions emerge. What has become of the pipe-
line and the combination approaches? Using the same
format as the 2007 paper, we have updated the data tables
with new or contemporary information on trials conducted
or in progress at that time, and added information on new
and ongoing studies. Information-gathering is based largely
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on the US National Institutes of Health-sponsored website
ClinicalTrials.gov (http://www.clinicaltrials.gov) and the
European equivalent (EU Clinical Trials Register; https://
www.clinicaltrialsregister.eu/index.html), as well as our
knowledge of the sector. Our analyses include studies con-
ducted in the predisease setting, before diabetes onset, for
both antigen-specific and non-antigen-specific approaches
[primary (high genetic risk) and secondary (high risk iden-
tified by islet cell autoantibody positivity) prevention
studies, Tables 1 and 2, respectively] and trials in which
recruitment centres on subjects who have already developed
disease (intervention studies; Tables 3 and 4, respectively).
There is a further update on trials using combination
approaches (Table 5). What have we learned from the clini-
cal trials that have been conducted? Has our general under-
standing of the disease altered in any respect in the
intervening period, such that we might review our thera-
peutic options?

Trial design for intervention studies

With the premise that type 1 diabetes is an immune-
mediated disorder, most efforts to intervene in disease
pathogenesis involve immune-based therapy. Without
exception, primary study end-points tend to focus on pres-
ervation of B cell function, as measured by stimulated
C-peptide production after a standardized food challenge
(oral glucose tolerance test, OGTT) or glucagon injection.
This is a justifiable criterion that is accepted by regulatory
agencies such as the US Food and Drug Administration and
European Medicines Agency. Several clinical trials assessing
immune interventions (teplizumab, otelixizumab, rituxi-
mab, abatacept; see Table 4) show a temporary delay in the
loss of B cell function as defined by OGTT, while injection
of a heat shock protein-derived peptide (DiaPep277;
Table 2) only showed a beneficial effect based on glucagon-
stimulated measurement of B cell function, but not on
OGTT; the reasons for this intriguing finding are not yet
known. Improved glycaemic control, as measured by reduc-
tion in glycated haemoglobin levels (HbA1c), should not be
considered a useful end-point going forward, even though it
was used (albeit unsuccessfully) in the Phase III teplizumab
(anti-CD3) trial. Patients enrolled into intervention trials
should be treated to prespecified HbAlc target levels using
standard clinical care, and thus any differences between
treatment and placebo groups raise concerns about study
design and conduct. In general, therefore, changes in
immune correlates of the autoimmune process [5] have not
been selected as study end-points, even though the disease
process is immune-mediated. Given that defining changes
in disease progression by C-peptide measurement imposes
long-term study follow-up, and new insights which suggest
that B cell function does not necessarily equate with B cell
mass [6], there is a strong argument to be made that the
field should shift towards alternative, immune-based end-
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points that can deliver more rapidly and potentially in
smaller-sized treatment groups, at least at a ‘proof-of-
concept’ stage [5,7].

As the unmet medical needs and potential benefits of
successful immunotherapy are greatest in children, it is
evident that the inclusion of children in clinical trials is
highly desirable, provided that there is adequate risk assess-
ment. Indeed, the inclusion of younger patients in the
rituximab trial secured short-term efficacy that would have
remained unnoticed if subjects only beyond 18 years of age
had been recruited [8]. Effects of otelixizumab in older
patients became apparent only upon extended follow-up
[9]. In addition to age, the timing of inclusion and window
of opportunity for success in relation to disease progression
remain poorly defined. Depending on the type of interven-
tion, it may prove difficult to treat during the medical
emergency of newly manifested disease, although early
enrolment (typically 3 months after diagnosis) has become
the common inclusion criterion for intervention trials. As
cells survive up to decades after diagnosis, together with
insulitic lesions [10,11], there is in reality no reason to
exclude patients beyond 3-6 months after diagnosis who
have measurable C-peptide, other than the slower slope in
decline of stimulated B cell function and associated reduced
statistical power to define treatment-induced changes. This,
again, argues for alternative (surrogate) end-points of
therapeutic efficacy [5]. Intervention studies beyond the
first year after onset would also avoid the confounding
effect of the natural remission and temporarily reduced
insulin needs (known as the ‘honeymoon’) that often occurs
shortly after initiation of insulin replacement therapy. In
terms of staging of patients during stratification in trial
enrolment, we may need to take lessons from new insights
emerging from studies on disease tissue (via the Network
for Pancreatic Organ Donors with Diabetes; nPOD [10])
and Phase III clinical trials failing to reach end-points
[12,13]. Both of these imply that type 1 diabetes may be a
very heterogeneous disease, manifesting differently in dif-
ferent patient groups and geographical locations. An
intriguing example is that of abatacept, which appeared to
worsen clinical outcome in African American subjects [14].
In addition, the average age at disease onset of patients
enrolled on the Indian subcontinent into the teplizumab
Phase III study was 44 years [13], an age of disease onset
that would usually be considered at the very upper limit.
With the exception of oral insulin [15] and proinsulin
peptide immunotherapy [16], immunological parameters
have not generally been used in selection or randomization
of patients in clinical trials. Lessons from the islet trans-
plantation setting, in which baseline immune correlates
determine clinical outcome [17-19], may be of use here and
it is conceivable that incorporating immune correlates into
trial design may improve the chance of detecting therapeu-
tic efficacy and indicate subpopulations of patients with
particular benefit, lack of efficacy or even adverse responses
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to certain immune intervention strategies [7]. While
common beliefs advocate a combination of drugs for inter-
vention (Table 5), it is important to scrutinize potential
adverse interference, as may have played a role in the recent
trial combining low-dose interleukin (IL)-2 and rapamycin,
in which each of the separate constituents could have
yielded clinical benefit [20]. Preclinical studies should be
used carefully to identify those showing the desired synergy
or any concerns in relation to the single components of
combinations (i.e. accelerated disease, see below).

Systemic immune modulators

Biological agents have proved to be immensely valuable in
the treatment of autoimmune disease, and type 1 diabetes is
no exception to this therapeutic track. Biologics targeting
lymphocytes or co-stimulation events generally invoke
immune suppression rather than modulation. This was
perhaps most evident in case of the rituximab intervention
study, in which patients were vaccinated under the treat-
ment umbrella in a rare attempt to understand the mecha-
nism of action of anti-CD20 immunotherapy. Indeed,
rituximab blunted the induction of immune responses
against a neoantigen, whereas after revaccination 1 year
later (3 months after cessation of rituximab therapy) vigor-
ous responses to the same neoantigen were established that
did not differ from placebo-treated patients [21]. This
observation underscores the fact that anti-CD20 therapy
suppression possibly inhibits new immune responses but, as
we know from the intervention study, does not instil or
restore tolerance [8]. The term ‘biologic cyclosporin’ has
been coined in this context. The recently reported failure of
anti-thymocyte globulin to preserve C-peptide in a Phase II
setting is a further wake-up call in this respect, emphasizing
at the same time the complexity of human cellular autoim-
mune responsiveness and the bluntness of some of the tools
at our disposal [22].

While biologics may prevent priming or spreading of the
immune response, for most there is little evidence that they
affect existing adaptive immunity. Indeed, abatacept [cyto-
toxic T lymphocyte antigen 4-immunoglobulin (CTLA4-
Ig)] is effective at preventing priming alloreactivity, but
appears to have little impact in reversing primed islet
autoimmunity [14]. The reduced requirement for
co-stimulation of autoreactive memory T cells [23] prob-
ably explains the limited clinical efficacy observed in the
established disease process of chronic islet autoimmunity
[14]. None the less, dimming immune reactivity with abata-
cept proved successful in delaying the progressive loss of
stimulated C-peptide capacity in some patients in this
study. The fact that the effect waned, even during continued
treatment, again hints at disease heterogeneity, for example
in the degree to which autoreactive T cell responses are
co-stimulation-dependent.
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With the exception of a small study using tumour necro-
sis factor (TNF)-a blockade [24], which showed potential
clinical efficacy (which cannot currently be explored further
due to safety concerns; see Table 4), interference in the
activity of effector cytokines has not yet delivered in type 1
diabetes, as underlined by two recent failed studies of IL-1
blockade [25] (Table 4). This is in striking contrast with
rheumatoid arthritis (e.g. benefits of blockade of TNEF-q,
IL-6 receptor, IL-1) and psoriasis (TNF-o., IL-23 and IL-17
pathways, IL-1). A central role for these cytokines in the
immunopathogenesis may therefore be worthy of greater
scrutiny and reconsideration, in spite of their clear role in
some preclinical models of autoimmune diabetes and other
autoimmune diseases. It remains plausible, of course, that
cytokine inhibition will be highly effective and synergistic in
combinations with other immune intervention strategies, as
preclinical models imply [26].

Antigen-specific approaches

Viewed by many as the best chance to restore immunologi-
cal self-tolerance in autoimmune diseases, antigen-specific
immunotherapy (ASI) faces many challenges in its develop-
ment and deployment, which is perhaps reflected in the
more limited pipelines and activity in this arena (Tables 1
and 3; Fig. 1). Many of the relevant issues have been dis-
cussed elsewhere [27], but to put this modality into per-
spective several of the notable challenges are highlighted in
Table 6. Perhaps in reflection of these, there has been
limited new activity in this arena since 2007. Notably, a
large primary prevention study of daily intranasal insulin
reported failure to halt progression to type 1 diabetes [28],
while the repeat oral insulin study conducted by Type 1
Diabetes TrialNet will not be able to report results until
2015, at the earliest. In the intervention setting, follow-up
studies of alum-conjugated glutamic acid decarboxylase
immunization (GAD-Alum), after initial successful pilot
data [29], have been disappointing at Phase II [30] and
Phase III stages [12]; a secondary prevention study is in
progress (Table 1).

New modalities of ASI have emerged, however, including
peptide and DNA-based deliveries, in some cases associated
with positive biomarker data [16,31] and in the case of
Diapep277, with evidence of clinical effectiveness (see
discussion above and Table 3). Full reporting of the
proinsulin-DNA vaccine and Diapep277 Phase III studies
are eagerly awaited. In terms of development, however, it is
notable that, for example, in the intervention setting, there
has been no attempt as yet to combine antigen with any
other treatment modality (Fig. 2), despite encouraging pre-
clinical data [32,33].

The role of preclinical models in trial design

With the somewhat high number of failed clinical trials in
type 1 diabetes in the past few years, it has become increas-
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Fig. 1. Bar charts show the number of clinical trials in different
categories according to the natural history of type 1 diabetes
(prevention, intervention) and treatment modality (none- or
antigen-specific).

ingly tempting to attribute some of the blame to animal
models. One often hears remarks such as ‘animal models
have misled us’ and the near-ubiquitous comment ‘mice are
not humans’ Clearly, we are all aware that diabetes in
various rodent models may only model in part how type 1
diabetes develops in humans. However, we would like to
argue here that animal models have a key place in the clini-
cal translation for therapeutic approaches in autoimmune
disease overall, as long as they are used correctly, not over-
interpreted and analysed carefully. It should be helpful,
therefore, to first take a closer look at the extent to which
animal studies diverge from human trials.

Several ASI trials in man have reported negative (or posi-
tive substudy) results (GAD-Alum, oral insulin and intrave-
nous insulin); have shown marginal effects (BayHill DNA
vaccine, Diapep277); or were not powered to demonstrate
efficacy, yet have not shown any strong clinical effects in
established diabetes (adjuvanted insulin B-chain peptide,
proinsulin peptide). Each trial is distinctly different and it is
therefore worthwhile to look at the facts one by one.
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Subcutaneous administration of GAD-Alum was devel-
oped on the basis of earlier studies by several teams, which
had all used GAD peptides to prevent diabetes in the non-
obese diabetic (NOD) mouse spontaneous disease model
[34,35]. Others have since prevented type 1 diabetes suc-
cessfully with oral GAD and in some cases GAD DNA vac-
cines also using other diabetes models [36]. A crucial
difference between the human trial and all the preclinical
studies is that immunization with GAD always worked to
prevent diabetes, yet never after diabetes onset. As dis-
cussed, this is a universal truth for all ASI, which has not
shown disease-reverting effects in animal models after clini-
cal signs of diabetes have developed. Thus, it would be
unreasonable to expect a stronger effect (in other words,
after onset of diabetes) in humans. Secondly, no preclinical
study ever tested the clinical GAD-Alum preparation, and
no efficacy was noted in our recent studies in NOD and B6
diabetes models (Pagni, Boettler and von Herrath, unpub-
lished). Again, it is probably unreasonable to expect an anti-
genic formulation to work in humans when it does not even
prevent diabetes in otherwise permissive animal models.
Several other theories have been proposed to account for
the failure of GAD-Alum in humans, including the lack of
GAD expression in [ cells; this is a controversial area, as
many studies have demonstrated expression of GAD-65 and
67 proteins in murine and human f cells [36]. Lastly, one
could ask whether the dose of GAD-Alum was sufficient —
as most patients mounted a clearly detectable immune
response, this appears less likely. However, alum might have
been a suboptimal adjuvant for an ASI, as the resulting
mixed but T helper type 2 (Th2)-dominated cytokine
response of induced GAD-reactive T cells (Arif, Roep and
Peakman, unpublished) did not result in protective cell
populations. In the absence of a functional mouse model of
GAD-Alum preventing diabetes, it will be difficult at this
point to clarify these issues.

The question of the antigenic dose might have more
bearing on the issue of efficacy with oral insulin [15]. As
predicted from animal models [37], prophylactic oral
insulin given at a daily dose of 7-5 mg had a very marginal
effect in preventing diabetes in individuals at high risk
(exhibiting multiple autoantibodies [38-41]), but not in
any other patient groups. However, as has been evident
from multiple studies in different mouse models, oral
insulin dosages have to be comparatively much higher to
induce optimal disease preventive effects, which are seen at
a dose of 1 mg given twice per week [42]. This dose would
equate to approximately 1 g of oral insulin twice per week
in humans. In addition, it is likely to be necessary to provide
the drug in enteric-coated capsules, without which
>99-99% of the insulin is lost through digestion in the
stomach and only minimal amounts of intact antigen or
some peptides will reach the lower gut and the Peyer’s
patches, the location at which oral insulin has been shown
to induce its desired immune-regulatory response. There-
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Table 6. Challenges faced in the development of antigen-specific immunotherapy (ASI) for type 1 diabetes.

Challenge

Discussion of issues

Setting for clinical trials

Traditionally, new therapies are trialled in the intervention setting (i.e. at disease onset). Disease reversal using

antigen alone at this stage will most probably be difficult. Prevention studies are long duration and expensive;

but without hints of efficacy as an intervention, will prevention studies be undertaken?

Dose Both high- and low-dose immunological tolerance has been described, probably equating to predominantly

deletional and regulatory mechanisms; which is better, and whether both effects could be harnessed, is not

known, however
Regime

favour deletion over regulation [27]

Adjuvants and enhancing

combinations Table 5)

Frequent (daily) dosing has been the norm until now (e.g. for intranasal and oral insulin), but again this may

A poorly explored area in general, despite encouraging data in preclinical models (e.g. anti-CD3 plus antigen; see

Agent It has yet to be determined whether whole antigens or fragments are superior; similarly, whether protein or

DNA-based delivery is better; free peptide or complexed to peptide—human leucocyte antigen multimers or

nanoparticles
Route of administration
head-to-head
Staging and stratification
principle for ASI?
Preclinical models

Parenteral or oral/nasal routes predominate, but the relative advantages of either have not been explored
Oral insulin appears effective in the subgroup of patients with high titres of insulin autoantibodies; is this a general

As a generalization, ASI works well if given early enough in disease models; but trialling the human antigens in

humanized models is an under-developed area

Role of industry and biotech

Antigens face the dual challenges of being difficult to develop with robust intellectual property and having a clear

route to market and have therefore been less favoured for commercial development than biologics and other

immune modulators

fore, more precise dose calculations should have probably
preceded the oral insulin trial and its current follow-up
study.

A further human/mouse mismatch relates to the overall
management of expectations when devising trials for ASI.
In rodent studies most, if not all, ASI is effective only for
early and, at best, late prevention of disease, but never after
onset of hyperglycaemia. Thus, we should not expect anti-
gens to reverse human diabetes or even preserve C-peptide
after onset (at least with effects detectable in reasonably
sized studies); and this has indeed been the case. Rather,
these types of studies are potentially invaluable for optimiz-
ing dose and administration schemes and biomarker devel-

Non-antigen-
specific
monotherapies

20

I 7
Antigen-

specific 6
monotherapies

7 Combinations

Fig. 2. Venn diagram shows the number of types of therapies used in
different modalities (mono- and combination; antigen and
non-antigen-specific) and the overlap between them.

opment, if immunological parameters are used as an
outcome. Here there will need to be ‘reverse translation)
because immune parameters are analysed rarely on periph-
eral blood and correlated with successful prevention (or
lack thereof) of diabetes on an individual basis in murine
studies.

Surprisingly, two recent trials (Andromeda’s heat shock
protein peptide p277 and Bayhill’s proinsulin expressing
DNA vaccine BHT3021; Table 4) reported positive out-
comes, even in the more stringent recent-onset diabetes
setting, by preserving C-peptide at certain dosing regimens.
These observations exceeded expectations based on animal
studies, where both strategies were only effective in prevent-
ing diabetes but not in reversing hyperglycaemia. It will be
important to explore whether, in either trial, immunologi-
cal outcomes were associated with better preservation of
C-peptide and thus could perhaps pave the way in future
for using such immunological end-points in staging as
entry criteria, or to optimize dosing in larger trials, prior to
embarking on the more arduous, expensive and time-
consuming prevention trials.

What we do better now or know better now?

Recent, seminal lessons from studies on pancreatic tissue of
type 1 diabetic donors provide compelling proof of the
autoimmune nature of type 1 diabetes; in particular, the
demonstration of B cell autoantigen-specific CD8 T cells in
destructive insulitic lesions has highlighted a link that had
not emerged in 2007. The persistence of B cells and insulin
production as well as inflammatory insulitic lesions many
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Fig. 3. Frozen pancreas tissue section from an organ donor who was

diagnosed with type 1 (T1D) diabetes 1 year earlier. The section was
stained for insulin (green, top) and human leucocyte antigen
(HLA)-ABC (red, bottom). Individual images were captured by
confocal microscopy and automatically combined in-silico into a
section-wide overview figure. Note the distinct region in the upper
right corner where some insulin-producing beta cells are still present.
These remaining insulin-positive islets also hyperexpress major
histocompatibility complex (MHC) class I, as evident in the lower
panel. Thus, this is a prime example of the lobular distribution of
both beta cell loss and immune pathology in T1D. Samples courtesy
of Network for Pancreatic Organ Donors with Diabetes (nPOD) (case
6052) and kindly provided by Dr Ken Coppieters.

years after clinical manifestations of hyperglycaemia are
also arresting, providing an apparent disconnect between 3
cell mass and function. These studies also emphasize
differences in immunopathology between men and mice;
provide evidence of pathological and aetiological heteroge-
neity [43-49]; and provide potential new biomarkers and
therapeutic targets centred on CD8 T cell biology [50-53]
that were not envisaged at the time of our last review-
(Fig. 3). Importantly, the ‘biomarker concept’ that has
become a critical piece of new drug development in the
pharma industry has also begun to feature strongly in
current thinking about type 1 diabetes therapies [5]; the
term was not even used in the previous paper [1].

There is probably more new insight to be gained from
studying the diabetic pancreas in settings such as nPOD.
For example, the observation that the remaining 3 cell mass
at clinical manifestation of disease may be substantial (as
much as 50%, rather than 10-20% cited in most textbooks)
disproves a common assumption that the disease process
has always reached an end-stage at this point.

Immune monitoring in clinical islet transplantation has
shown that the current immune suppressive regimes that
include thymoglobulin are ineffective for the control of
memory T cells; this concept is supported further by the

IMMUNOLOGY IN THE CLINIC: DIABETES UPDATE

lack of efficacy observed in the recent anti-thymocyte
globulin (ATG) trial (Table 4) [54]. Thus the autoreactive
memory T cell, and the nature of its biology and control,
emerge as important research questions, built on knowledge
gained in recent years. As discussed already, the disappoint-
ing outcome of trials targeting the proinflammatory
cytokine IL-1 [25] may require a revision of thinking in
relation to the importance of this immune pathway. Finally,
a relatively new paradigm has come to prominence, namely
that the biology of B cells can contribute to the cell’s own
demise through active participation at key points of the
interface with the immune system, from immune recogni-
tion to immune cell recruitment and killing [55-57]. A
better understanding of these processes could be useful in
devising better combination-based candidate strategies of
immune intervention and prevention in type 1 diabetes.

The future pipeline

We would like to argue that animal models, when employed
correctly, can be extremely useful for testing and optimizing
new interventions for human type 1 diabetes. In addition,
the new knowledge being accrued must be assimilated.
We suggest the following strategic guidelines for pipeline
development.

1. Defining the optimal dose for an antigen or biologic.
Treating with the correct dose is of paramount impor-
tance, for ASI treatment with incorrect doses may result
in loss of efficacy (see above) or may even be accelerat-
ing. For biologics, treating at an incorrect dose may not
only mean loss of effect (as with otelixizumab in Phase
III), but also increased side effects, if too much drug is
given. Assumptions may be made that, for example, a
monoclonal antibody targeting T cells will be effective as
long as there is target molecule internalization; however,
studies in mice show that there may be an approximate
log-fold difference in dose between internalization and
full efficacy. Thus, careful dosing studies in models,
coupled with appropriate biomarkers, will be critical in
attaining good efficacy in humans.

2. Preclinical testing of combinations. Despite the logic of
this approach, it is becoming clear that not all combina-
tions exhibit additive effects, let alone synergies. Thus,
careful optimization of combinations prior to clinical
trials is needed. As a case in point, for example, not all
antigens synergize with anti-CD3 therapy [32]. To accel-
erate translation in this arena, the Immune Tolerance
Network (ITN; http://www.immunetolerance.org) has
established a combination therapy testing consortium, in
which four independent laboratories evaluate combina-
tions of biologics and antigens in recent-onset diabetes
in NOD mice. Such studies have so far demonstrated
limited additive effects when examining potentially new
combinations of biologics and antigens in recent-onset
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diabetes. Clearly, it will be important to establish which
combinations work, and how.

3. Assessing patient heterogeneity. Is all type 1 diabetes the
same? Our knowledge to date indicates that this is
unlikely to be the case, and this should caution us to
anticipate subgroup effects. For example, the rate of B
cell loss varies between individuals, being most rapid in
younger individuals aged 20 or less [58]. The fact that
Diapep277 only had its effects in older patients and in
those with lower-risk major histocompatibility complex
(MHC) illustrates this [59]. To date, we are not certain
whether the underlying immune pathology varies
between different forms of type 1 diabetes (for example,
a more IFN-dependent versus a more IL-dependent dia-
betes, or T cell-dependent versus NK cell-dependent islet
destruction [60]), but nPOD studies may elucidate this.
In that case, stratifying patients by immune phenotypes
may become an increasingly important feature of trial
design.

4. Defining the optimal disease stage for a given therapy.
One paradigm that may emerge from ongoing diabetes
trials is that the more aggressive the immune CD8 reac-
tivity to islets, the more advanced B cell loss is, the less
likely it is that any treatment will be effective (various
studies, unpublished). Monoclonal anti-CD3 antibodies
do not appear to preserve C-peptide in patients with
advanced B cell loss (lower C-peptide at trial entry).

5. Managing expectations. Taking the above issues at face
value, not over-interpreting the data from animal models
or being excessively optimistic (‘this has to work’) and
refraining from conducting trials simply because drugs
are available and effective in other immune disorders is
an important message set to help avoidance of disap-
pointments with future diabetes trials.
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